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Follow Up To: 
 

Avoidance behavior in intraguild predation communiities : A cross-diffusion 
model 
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(2015), 1641-1663. 



Intraguild Predation(IGP) : A predator and prey also compete for a shared 
resource 

 
a.  Occurs widely in nature (Arim and Marquet, Ecology Letters 2004) 

 
b.  Significant early modeling of IGP (Holt and Polis, American Naturalist 
1997): 3 species ODE models. Found strong IGP was particularly prone to 

species exclusions even though IGP wide spread in nature. Offered 
various suggestions for research into mitigating mechanisms, one of 

which was environmental heterogeneity. 
 

c. Empirical studies (Durant,Behavioral Ecology 2000;  
  Lucas et al,Environmental Entomology 2000; Palomares and Ferreras, 

Journal Applied Ecology 1996; Sergio et al, Journal Animal Ecology 2003; 
 Thomson and Gese, Ecology 2007) suggest mechanism of a nonrandom 

  dispersal strategy in which IG prey concentrate in areas of marginal 
   habitat quality to avoid predation risk of high quality areas where IG 

   predator tends to congregate. 



d. Amarasekare was the first to model IGP in heterogeneous environments 
via a three patch three species system of ODE’s ( 9 total equations). She 

incorporated random movement strategies (Amarasekare, Journal of 
Theoretical Biology 2006) and then nonrandom strategies (density 

dependent, habitat dependent, fitness dependent) (Amarasekare, American 
Naturalist 2007). 

















Global Existence and Compact Global Attractor (Cont.) 
 

a. Amann (Nonlinear Analysis 1988, Mathematische Zeitschrift (1989), 
Differential and Integral Equations (1990) proved global existence results for a 

class of quasi-linear parabolic PDE problems that include (1)-(2). 
 

b. Thm 1 of MZ (1989) implies that if p > n, there is a unique classical solution 
to (1)-(2) corresponding to an initial density configuration in our space. This 
solution exists on maximal interval J. Thm 3 of MZ (1989) implies that if the 

L∞ norms of all components are bounded for t ε J, then J = [0, ∞). 
 

c. Standard comparison principles for single parabolic equations with 
coefficients that depend on space and time can be applied to conclude that 

solution coefficients remain nonnegative in space for t ε J. 



Global Existence and Compact Global Attractor (Cont.) 
 
d. Le (Indiana University Mathematics Journal 2002) proved stronger results for a two component 
system with additional assumptions bounding the growth of the flux and reaction terms. Le’s 
system included one component with dispersal described by cross diffusion and one with random 
dispersal . He shows that if the component incorporating cross diffusion is ultimately uniformly 
bounded in Ln (Ω), one can bootstrap to get the L∞  bounds needed to employ Amann. In a 
particular example he shows how to get L2 (Ω) bounds when Ω lies in two dimensional Euclidean 
space. In the DCDS-A paper we argued  how the proof of Thm 2.2 of IUMJ 2002 can be extended 
and adapted to prove global existence of solutions to (1)-(2) when p > 2. Moreover, when viewed 
as a semi-flow on our space, we showed (1)-(2) will have a compact global attractor.  The essence 
of Le’s approach (in the context of (1)-(2)) is to use Gagliardo-Nirenberg type inequalities to get 
appropriate integral estimates on the gradients of u and w. These estimates work beautifully 
when n= 2. Not so much for n > 2. 
e.  Adding predator mutual self-interference enables us to bound (f~) 2 independent of the 
density of v which is a key step in getting suitable estimates on the gradients of both u and w 
without relying on Gagliardo-Nirenberg.  





Motility Functions Modeling Avoidance 
 

a. The condition that  M~v
  be nonnegative for all nonnegative u,v, and w can be 

relaxed to having  M~v
 (u(x,t),v(x,t),w(x,t)) nonnegative for all x in Ω and t > t0 . 

 
b. We assume IG prey is able to assess local density of resources and frequency of 
predator attacks. This assumption is reasonable for a variety of species (Durant, 

Behavioral Ecology 2000; Palomares and Ferrerras, Journal of Applied Ecology 1996; 
Sergio et al, Journal of Animal Ecology 2003; Thomson and Gese, Ecology 2007). It 
uses resource availability and frequency of predator attacks as a means of judging 
local environmental quality to increase its motility in regions judged to bad with a 

lower base rate of motility in regions judged to be good. 



 c. The fitness function g(u,v,w) is a good candidate to measure local 
environmental quality.  So we think of M~(u,v,w) as M(g(u,v,w)) where M is a 

function of a single variable, so that M~v is (DM/dg) * (gv) 
 

d. We think of embedding M(g) into a family Mλ(g) to capture a varying 
strength of the avoidance response. {Mλ(g )} λ≥0 

satisfies 
 

(6a) d2 ≥ Mλ(g) ≥ d for all λ, g* ≥ 0 
 

(6b) Mλ(g) ≥ d2 for all λ, g* < 0 
 

(6c) Mλ(g) → ∞ as λ →∞ for all g* < 0            
 

                                            























Numerical Examples 
 

Scenarios: Related to Holt and Polis, American Naturalist 1997 
 

Scenario One: IG Predator does not gain significantly from consumption of IG 
prey (e3 small or zero) 

 
Scenario Two: IG prey is an inferior competitor for the shared resource  

( e1 < e2) but is able to invade and persist using fitness based avoidance by 
exploiting areas where the IG predator has under exploited the available 

resources due to over dispersion. IG predator has a moderate random 
diffusion rate and is only mildly aggressive toward the IG prey (a3 small). 
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