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Intraguild Predation(IGP) : A predator and prey also compete for a shared
resource

a. Occurs widely in nature (Arim and Marquet, Ecology Letters 2004)

b. Significant early modeling of IGP (Holt and Polis, American Naturalist
1997): 3 species ODE models. Found strong IGP was particularly prone to
species exclusions even though IGP wide spread in nature. Offered
various suggestions for research into mitigating mechanisms, one of
which was environmental heterogeneity.

c. Empirical studies (Durant,Behavioral Ecology 2000;
Lucas et al,Environmental Entomology 2000; Palomares and Ferreras,
Journal Applied Ecology 1996; Sergio et al, Journal Animal Ecology 2003;
Thomson and Gese, Ecology 2007) suggest mechanism of a nonrandom
dispersal strategy in which IG prey concentrate in areas of marginal
habitat quality to avoid predation risk of high quality areas where 1G
predator tends to congregate.



d. Amarasekare was the first to model IGP in heterogeneous environments
via a three patch three species system of ODE’s ( 9 total equations). She
incorporated random movement strategies (Amarasekare, Journal of
Theoretical Biology 2006) and then nonrandom strategies (density
dependent, habitat dependent, fitness dependent) (Amarasekare, American
Naturalist 2007).
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Global Existence and Compact Global Attractor (Cont.)

a. Amann (Nonlinear Analysis 1988, Mathematische Zeitschrift (1989),
Differential and Integral Equations (1990) proved global existence results for a
class of quasi-linear parabolic PDE problems that include (1)-(2).

b. Thm 1 of MZ (1989) implies that if p > n, there is a unique classical solution
to (1)-(2) corresponding to an initial density configuration in our space. This
solution exists on maximal interval J. Thm 3 of MZ (1989) implies that if the

Leo norms of all components are bounded for t € J, then J = [0, o).

c. Standard comparison principles for single parabolic equations with
coefficients that depend on space and time can be applied to conclude that
solution coefficients remain nonnegative in space for t € J.



Global Existence and Compact Global Attractor (Cont.)

d. Le (Indiana University Mathematics Journal 2002) proved stronger results for a two component
system with additional assumptions bounding the growth of the flux and reaction terms. Le’s
system included one component with dispersal described by cross diffusion and one with random
dispersal . He shows that if the component incorporating cross diffusion is ultimately uniformly
bounded in L"(Q), one can bootstrap to get the L bounds needed to employ Amann. In a
particular example he shows how to get L2 (Q) bounds when Q lies in two dimensional Euclidean
space. In the DCDS-A paper we argued how the proof of Thm 2.2 of IUMJ 2002 can be extended
and adapted to prove global existence of solutions to (1)-(2) when p > 2. Moreover, when viewed
as a semi-flow on our space, we showed (1)-(2) will have a compact global attractor. The essence
of Le’s approach (in the context of (1)-(2)) is to use Gagliardo-Nirenberg type inequalities to get
appropriate integral estimates on the gradients of u and w. These estimates work beautifully
when n= 2. Not so much for n > 2.

e. Adding predator mutual self-interference enables us to bound (f~) 2independent of the
density of v which is a key step in getting suitable estimates on the gradients of both u and w
without relying on Gagliardo-Nirenberg.
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Motility Functions Modeling Avoidance

a. The condition that M~, be nonnegative for all nonnegative u,v, and w can be
relaxed to having M~ (u(x,t),v(x,t),w(x,t)) nonnegative for all xin Qand t > t,.

b. We assume |G prey is able to assess local density of resources and frequency of
predator attacks. This assumption is reasonable for a variety of species (Durant,
Behavioral Ecology 2000; Palomares and Ferrerras, Journal of Applied Ecology 1996;
Sergio et al, Journal of Animal Ecology 2003; Thomson and Gese, Ecology 2007). It
uses resource availability and frequency of predator attacks as a means of judging
local environmental quality to increase its motility in regions judged to bad with a
lower base rate of motility in regions judged to be good.



c. The fitness function g(u,v,w) is a good candidate to measure local
environmental quality. So we think of M~(u,v,w) as M(g(u,v,w)) where M is a
function of a single variable, so that M~ is (DM/dg) * (g,)

d. We think of embedding M(g) into a family M,(g) to capture a varying
strength of the avoidance response. {M,(g )} s0
satisfies
(6a) d, > M,(g) 2d forallA, g* 20
(6b) M,(g) > d, forall A, g* <0

(6¢c) M,(g) > eeas A e forallg* <0
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Numerical Examples
Scenarios: Related to Holt and Polis, American Naturalist 1997

Scenario One: IG Predator does not gain significantly from consumption of IG
prey (e; small or zero)

Scenario Two: |G prey is an inferior competitor for the shared resource
(e, <e,) butis able to invade and persist using fitness based avoidance by
exploiting areas where the IG predator has under exploited the available
resources due to over dispersion. |G predator has a moderate random
diffusion rate and is only mildly aggressive toward the IG prey (a; small).
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